Mingling: mixed-integer rounding with bounds

نویسندگان

  • Alper Atamtürk
  • Oktay Günlük
چکیده

Mixed-integer rounding (MIR) is a simple, yet powerful procedure for generating valid inequalities for mixed-integer programs. When used as cutting planes, MIR inequalities are very effective for mixed-integer programming problems with unbounded integer variables. For problems with bounded integer variables, however, cutting planes based on lifting techniques appear to be more effective. This is not surprising as lifting techniques make explicit use of the bounds on variables, whereas the MIR procedure does not. In this paper we describe a simple procedure, which we call mingling, for incorporating variable bound information into MIR. By explicitly using the variable bounds, the mingling procedure leads to strong inequalities for mixed-integer sets with bounded variables. We show that facets of mixed-integer knapsack sets derived earlier by superadditive lifting techniques can be obtained by the mingling procedure. In particular, the mingling inequalities developed in this paper subsume the continuous cover and reverse continuous cover inequalities of Marchand and Wolsey (Math Program 85:15–33, 1999) as well as the continuous integer knapsack cover and pack inequalities of Atamtürk (Math Program 98:145–175, 2003; Ann Oper Res 139:21–38, 2005). In addition, mingling inequalities give a generalization of the This research is funded, in part, by an IBM faculty award. A. Atamtürk is grateful for the hospitality of the Georgia Institute of Technology, where part of this research was conducted. A. Atamtürk (B) Department of Industrial Engineering and Operations Research, University of California, Berkeley, CA 94720-1777, USA e-mail: [email protected] O. Günlük Mathematical Sciences Department, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N-step Mingling Inequalities: New Facets for the Mixed-integer Knapsack Set

The n-step mixed integer rounding (MIR) inequalities of Kianfar and Fathi (Math Program 120(2):313–346, 2009) are valid inequalities for the mixedinteger knapsack set that are derived by using periodic n-step MIR functions and define facets for group problems. The mingling and 2-step mingling inequalities of Atamtürk and Günlük (Math Program 123(2):315–338, 2010) are also derived based on MIR a...

متن کامل

Error bounds for mixed integer linear optimization problems

We introduce computable a-priori and a-posteriori error bounds for optimality and feasibility of a point generated as the rounding of an optimal point of the LP relaxation of a mixed integer linear optimization problem. Treating the mesh size of integer vectors as a parameter allows us to study the effect of different ‘granularities’ in the discrete variables on the error bounds. Our analysis m...

متن کامل

A feasible rounding approach for mixed-integer nonlinear optimization problems

We introduce a new technique to generate good feasible points of mixedinteger nonlinear optimization problems. It makes use of the so-called inner parallel set of the relaxed feasible set, which was employed in O. Stein, Error bounds for mixed integer linear optimization problems, Mathematical Programming, Vol. 156 (2016), 101–123, as well as O. Stein, Error bounds for mixed integer nonlinear o...

متن کامل

Safe bounds in linear and mixed-integer linear programming

Current mixed-integer linear programming solvers are based on linear programming routines that use floating-point arithmetic. Occasionally, this leads to wrong solutions, even for problems where all coefficients and all solution components are small integers. An example is given where many state-of-the-art MILP solvers fail. It is then shown how, using directed rounding and interval arithmetic,...

متن کامل

Error bounds for mixed integer nonlinear optimization problems

We introduce a-posteriori and a-priori error bounds for optimality and feasibility of a point generated as the rounding of an optimal point of the NLP relaxation of a mixed-integer nonlinear optimization problem. Our analysis mainly bases on the construction of a tractable approximation of the so-called grid relaxation retract. Under appropriate Lipschitz assumptions on the defining functions, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2010